
11

Computer Science (Episode 3)

Episode 3 (Control and arithmetic devices)

 ＣＰＵ（Central Processing Unit）

Tanuki, next we're going to talk about CPUs

(central processing units).

It's a tough one, so don't give up!

What is CPU?

It is the heart of the computer, the most

important part of the five major devices,

and does the most complex job.

Let us illustrate it below!

Control unit

Instruction Address Register (PR: Program

Counter)

SP (stack pointer)

FR (Flag register)

instruction register

 ↓

Instruction decoder (decoder)

Arithmetic unit

 GR0 (general-purpose register) 16 bits

 GR1 (general-purpose register)

 Also used as an accumulator

 ：

operation

circuit

12

 ［Solution.]

 A register is the name given to an area in the CPU that temporarily stores

 data. The register is a name given to an area in the CPU that temporarily

 stores data.

 Control unit

 ・instruction address register

 A register that stores the address of the next program to be executed.

Also called program counter (PR).

 ・Stack-pointer

 A register that stores the return address when control is transferred

from the main program to a subprogram.

 ・Flag register (3 bits)

 OF (1 bit): 1 when the result of an operation no longer fits into the

 16-bit area, 0 when it fits.

 Different for arithmetic and logical operations.

 SF (1 bit): 0 for a positive (+) operation result, 1 for a negative

 (-) result.

 ZF (1 bit): 1 for an arithmetic result of 0, 0 otherwise.

 ・instruction register

 Registers that store program instructions in the following format.

 ・Instruction decoder (decoder)

 The code in the instruction section of the instruction register is

 retrieved, interpreted, and operation instructions are conveyed to the

 arithmetic unit.

 arithmetic unit

 ・general purpose register

 There are five registers from GR0 to GR4. (The number varies with

 specifications.)

 Stores numerical values used in calculations and saves calculation

 results.

 In particular, GR4 is used as an accumulator that stores the results

 of accumulations.

Instruction part (opcode + operand)

address field

13

 ・operation circuit

 Performs arithmetic (addition, subtraction, multiplication, and

 division quadrature), logic,comparison, and shift operations.

The arithmetic circuit shown above has an addition

circuit and a subtraction circuit. When I explained

complementary numbers before, I said that the

addition circuit is simple and the subtraction

circuit is a bit more complicated and slower.

Let me try to explain that here.

Kitsune, draw a diagram and explain it clearly.

There were so many terms I didn't know

that it was making my head hurt.

Sure, maybe not for raccoons. I don't need to memorize

the terms,I wish I could grasp the flow of the process.

I hope you realize that there is a lot to learn in order

to understand the terms used here.

For example, if you wonder what a stack pointer is,

you need to learn about PUSH and POP of the stack area.

This is what I call "seeing the forest and knowing the

trees! I don't know if it's possible.

The decimal number 3 + 3 = 6, which even a raccoon

would understand. If we express this in binary, we

get [11] + [11] = [110]. Let's run this through an

adder. Let us mention that there are two types of

adders: half adders, which are used to add the first

digit, and full adders, which are used after the

second digit corresponding to the carry-over.

14

 Additive circuits for arithmetic circuits (half and full adders)

 There are two types of adders: half adders that cannot carry carry digits and

 full adders that can carry digits.

 (Calculation example) Let's calculate the following in binary.

 Performed by all adders Do it in half addition

 Value of A1

 ＋ Assume the value of B is 1.

 １（Value of S）１ 0 (Value of S)

 Digit up 1 (value of C)

 Digit up 1 (value of C)

 This is done with a half adder.

 Half-adder (used in the first digit of a binary number calculation)

 Input value A(1) Output value S(0)

 The value of the increase

 Input value B(1) in digit C(1)

 The next digit (the second digit) is made with the full adder.

 All adders (used after the second digit of a binary number calculation)

 Input value A(1) （0） Output value S(1)

 （1）

 Input value B(1) C(1)

 carry of bit

 （0） （1）

 X(1) （0）

 Digit increase value from previous X

AND

XOR

AND

XOR

AND

XOR

ＯＲ

１

１

１

１

15

Tanuki, I hope you understand. You can see that after

you have reached this point, you must next study

logical operators such as AND, OR, XOR, and so on.

This is what it means to study. The more you know,

the deeper you go.

Now, subtraction circuits also have half-subtractors

and full-subtractors, and when subtracting, you have

to borrow from the previous one, which is

complicated, so I won't explain it here!

You may or may not know about the arithmetic

circuits, Kitsune, but I don't see how those

other registers and such work at all!

That's right. I don't get it, do I?

So, I thought, "Why don't I just run a simple program

and look at it one by one? I thought it would be better

to run a simple program and look at it one by one.

The programming language that the CPU can understand

is machine language. Machine language is ultimately

expressed in binary numbers, but that is too difficult

to understand, so we use a language called assembler

language. Converting a program written in assembler

language into machine language is called assembly.

16

I came up with a program (asm1-7.cs2) that does the

simplest calculation: 20 + (-10: converted to the

complement) = 10.

The program is shown below, but even if you don't

know the language, you should be able to visualize

it. If you are interested, you can learn assembler

language as well.

So the next step is to learn a programming language.

Programming languages include C, Python,

Java ・・・・

and so on, but they all eventually get converted

to machine language. Here, you've probably seen

the need for a programming language.

I'm going to use assembler language for the

explanation. Assembler language is a language

whose specification is determined by the type of

CPU.

Therefore, I will use the assembler language

called COMET and CASL II, which are used in the

Basic Information Technology Engineer

Examination.

17

 asm1-7.cs2

 assembler source program hexadecimal Machine language (binary)

 main storage

 8000-8001（address） program area

 ①

 8002-8003 (address)

 ②

8004-8005 (address)

 ③

 ④

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Labels.Inst.part(opcode + operand)

REIDAI START

 Explanation; Start of program

 LD GR1,A

 ；opcode operand、label

 ；Put the data of label A into the

 general purpose register (GR1).

 ADDA GR1,B

 ；Add the data of label B to the

 value of GR1 and assign the

 result to GR1.

 ST GR1,ANS

 ；Store the value of GR1 in

label ANS.

 RET

 ；Stopping the program.

A DC 20

 ；Data are 20

B DC -10

 ；Data is -10, but complement

 conversion.

ANS DS 1

；1 word length (16 bits) area gua

 ranteed 1 word length (16 bits)

 END

 ；End of Program

1010

8007

2010

8008

1110

8009

8100

0014

FFF6

7FFF

8006 (address) without operand

8007 (address) data area

(

8008 (address) Complement computed

8009 (address) Initial value for

 securing one word length

18

I've attached an explanation of the opcode

(shown in green) in the instruction section to

the source on the left. The operand GR1 (shown

in orange) is represented by [0001 0000], while

GR2 is [0010 0000], distinguishing the

general-purpose register to be used. The first

one [10000000000000000111] (8007), displayed in

blue, indicates the location (address) of the

main memory in Label A. The -10 in the data

displayed in red is converted to the binary 2's

complement [11111111111111110110].

Next, let's look at the state of processing by

the control unit & arithmetic unit for each

instruction from (1) to (4).

19

 ① ＬＤ ＧＲ1，Ａ

 Instruction register Instruction address register (program counter)

 Label A address (8007)

 Store the value of label A (8007) + 20

 ② ＡＤＤＡ ＧＲ1，Ｂ

Instruction register Instruction address register (program counter)

 Label B address (8008)

 the result of addition to GR1

Instruction part (opcode + operand)

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

Address field

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0

Instruction part (opcode + operand)

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

Address field

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0

General-purpose register (GR1)

Indicate next program (8002)

Indicates a positive value

Flag register (FR)

General-purpose register (GR1)

Indicate next program（8004）

を指示

Indicates a positive value

Flag register (FR)

Operation circuit

Perform arithmetic operations with half

and full adders

Data at address (8008)

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

General-purpose register (GR1)

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

+(Addition Result)

 ↓

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Instruction

decoder

Instructions.

Instruction

decoder

 Instructions.

20

 ③ ＳＴ ＧＲ1，ＡＮＳ

Instruction register Instruction address register (program counter)

Address of label ANS(8009)

 ④ ＲＥＴ

Instruction register Instruction address register (program counter)

no directed address

Instruction part (opcode + operand)

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

Address field

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Instruction part (Opcode only)

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Address field

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

General-purpose register (GR1)

Indicate next program(8006）

8009（address） ST (Store)

Flag register (FR)

 Indicates a positive value

General-purpose register (GR1)

 Maintain value

 No next instruction. Termination

8009（address） Maintain value

Flag register (FR)

 Indicates a positive value

Instruction

decoder

Instruction

decoder

Instructions.

Instructions.

21

Translated at DeepL

It's like this. Tanuki, do you understand?

I think I understand, but I don't know.

Well, I knew I was doing something complicated.

I haven't studied the assembler language yet,

so I guess it's not too much to ask.

Let's move on to Episode 4.

