Episode 4 (Output device)

[Shift operation]

Multiplication is done by shifting left.
Let us calculate $7 \times 5=35$ by imagining a CPU arithmetic unit. 7 in 8 -bit binary representation is as follows.

0	0	0	0	0	1	1	1

Shifting one bit to the left doubles the value to 14 .

0	0	0	0	1	1	1	0

Shifting one bit further to the left increases the value by a factor of 4 to 28.

0	0	0	1	1	1	0	0

Shifting one bit further to the left would increase the value by a factor of 8 to 56 . Here, the shift operation can no longer be used, and 7 must be added.

Division is done by right shift.
Let us calculate $7 \div 5=1 \cdots 2$ (remainder) by imagining a CPU arithmetic unit. 7 in 8 -bit binary representation is as follows.

0	0	0	0	0	1	1	1

Shifting one bit to the right should be $1 / 2$ times 3.5 , though.

If you shift it one bit further to the right, it should be $1 / 4$ times 1.75 .

OK, I know what to study!

[+ The concept of taking out the second digit 1 and the first digit 0 of +10]
Ignore sign

$$
\begin{aligned}
& +10 \div 10=1 \text { (dealing) •••0 (over) } \\
& \text { A B S M and place it on. }
\end{aligned}
$$

(initialization) Prepare registers in the CPU as follows.
A

0	0	0	0	1	0	1	0

s

0	0	0	0	0	0	0	0

Shifted 1 bit to the left so that $\mathrm{A}<\mathrm{B}$
B

0	0	0	1	0	1	0	0

$\mathrm{m} \quad$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

L indicates digit to be operated, linked with B

| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(procedure(1) If A < B

- Shift B one bit to the right.
в

0	0	0	0	1	0	1	0

s

0	0	0	0	0	0	0	0

- L is also shifted one bit to the right.
L

$\mathrm{M} \quad$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(procedure(2) If $\mathrm{A}>=\mathrm{B}$

- A B
00001010

000000000				
000010				

$\cdot \mathrm{S}+\underset{00000000}{\mathrm{~L}}$

B

0	0	0	0	1	0	1	0

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0	0	0	0	0	0	0	0	1

(procedure(3)) If $\mathrm{A}<\mathrm{B}$

- Shift B one bit to the right.

B

0	0	0	0	0	1	0	1

$\mathrm{S} \quad$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- L is also shifted one bit to the right.

L

M | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A \quad| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(procedure(4)) If $L=0$
Extracting the first digit (remainder)
A

$\longrightarrow \mathrm{M}$

Transfer the value of A to M

Extracting the second digit (quotient)
B

$\mathrm{S} \quad$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

L

0	0	0	0	0	0	0	0

(procedure(5) Addition of zone section [0011].
Extracting the second digit (quotient) Extracting the first digit (remainder)

$\mathrm{m} \quad$| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$+$| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0	0	1	1	0	0	0	1

31 (hexadecimal key code)
30 (hexadecimal key code)
※ The output will be available at 3130 .

0	0	1	1	0	0	0	1	0	0	1	1	0	0	0	0

Translated at DeepL

