
22

Computer Science (Episode 4)

Episode 4 (Output device)

Kitsune, there is still output to the monitor,

but the result [00000000000000001010] (+10)

calculated by the arithmetic unit has been

stored in [8009] (address) in the main memory,

so we can output this and be done with it.

It's an acerbic concoction!

If you output it as is, as Tanuki said, you'll just get

blanks on your monitor or garbage. If it's a printout,

I guess nothing will be printed and it'll be like, what

the heck is this? As I think I mentioned in Episode 2,

to be displayed on the monitor, it has to be in character

type, not numeric type. Plus, it has to be in zone format

or it won't be displayed.

It's a lot of work just to get it to display.

23

In a high-level language, the print and write commands are

enough to display and print, but in an assembler language,

you have to convert a number to a character type, add a

zone part to it, and make the code the same as the key on

the keyboard. However, in the case of high-level

languages, the programmer does not have to do the

conversion work, but the same thing is done automatically

during the compilation process. High-level languages,

which use code similar to human language, are easy to

handle, while assembler languages, which are similar to

machine language, are difficult for humans to handle. In

that sense, they are low-level languages. Assembler

languages work directly with the CPU, so the processing

speed was much faster, but nowadays the performance of

computers has improved dramatically, so even if you use

a high-level language, you no longer feel slow.

Yes, but first, let's think about displaying the

result of +10 with a zone part. This is a lot more

difficult than it seems: we have to take the 1's and

0's out of the +10 and make them into [0000000001] and

[000000000000]. If we add the zone part [0011000000],

we get [00110001] and [0011000000], which are 31 and

30 in hexadecimal, the same codes as the keys [1] and

[0] on the keyboard.

The code is the same as the key and on the

keyboard, and can be displayed and printed.

I understood that I had to add a zone part to the

resultant number to get it to display, but then the next

issue came up that I had to learn more about high-level

languages, low-level languages, compilers, and so on.

1

0

24

Can you give me a concrete

example, like 10 divided by 10?

It is easy to take out the first digit as 0 and the

second digit as 1, but it takes a lot of knowledge

to make a computer arithmetic unit do this. But the

basic idea of dividing by 10 to take out each digit

is the same.

It is important to understand that arithmetic units

can only perform addition, subtraction,

multiplication, division, and comparison

operations. In addition, multiplication and division

are a combination of shift operations and addition

to produce the result. Therefore, you cannot

understand multiplication and division without

understanding the shift operation.

Let me explain the shift operation!

25

 [Shift operation]

 Multiplication is done by shifting left.

 Let us calculate 7 x 5 = 35 by imagining a CPU arithmetic unit.

 7 in 8-bit binary representation is as follows.

 Shifting one bit to the left doubles the value to 14.

 Shifting one bit further to the left increases the value by a factor of

 4 to 28.

 Shifting one bit further to the left would increase the value by a factor

 of 8 to 56. Here, the shift operation can no longer be used, and 7 must

 be added.

 00011100

 ＋00000111 35 (decimal)

 00100011

 Division is done by right shift.

 Let us calculate 7 ÷ 5 = 1･･･2 (remainder) by imagining a CPU arithmetic unit.

 7 in 8-bit binary representation is as follows.

 Shifting one bit to the right should be 1/2 times 3.5, though.

 If you shift it one bit further to the right, it should be 1/4 times 1.75.

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 0

0 0 0 1 1 1 0 0

0 0 1 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

1 A bit drop would be 3.

1 A bit drop will result in 1.

26

If the division of an integer divisible by 2, the

shift operation

but it is not likely to be possible to do 7 divided

by 5 without combining it with other methods.

7 divided by 5 is not likely to be possible unless

it is combined with other methods.

Tanuki, if you are interested in the details of the

shift operation

you should study the details of the shift operation

by yourself.

OK, I know what to study!

Now that I've explained the basic shift

operation, I'll go back to the beginning and

explain +10 ÷ 10 = 1･･･0!

I'll use the assembler language to illustrate

the outline because it's complicated and

confusing to explain.

27

［＋The concept of taking out the second digit 1 and the first digit 0 of +10］

 Ignore sign

 +１０ ÷ １０ ＝ １（dealing）・・・・０（over）

 Ａ Ｂ Ｓ Ｍ and place it on.

 （initialization）Prepare registers in the CPU as follows.

（procedure①）If A ＜ B

 ・Shift B one bit to the right.

 ・L is also shifted one bit to the right.

 （procedure②）If A >= B

 ・Ａ － Ｂ ・S ＋ Ｌ

 00001010 00000000

 - 00001010 + 00000001

 00000000 00000001

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

Ａ

Ｂ

Ｓ

Ｍ

Ｌ

Ｂ Ｍ

Ｌ

Ａ Ｓ

L indicates digit to be operated, linked with B

Shifted 1 bit to the left so that A < B

Ｂ

Ｌ

Ａ

Ｍ

Ｓ

28

（procedure③）If A ＜ B

 ・Shift B one bit to the right.

 ・L is also shifted one bit to the right.

（ procedure④）If L = 0

（procedure⑤）Addition of zone section [0011].

 31 (hexadecimal key code) 30 (hexadecimal key code)

※ The output will be available at 3130.

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0

Ｂ

Ｌ

１

bit drop

Ａ

Ａ

Ｍ

Ｓ

Ｍ

Transfer the value of A to M

Ｂ

Ｌ

Ｓ

Extracting the first digit (remainder)

Extracting the second digit (quotient)

Ｍ Ｓ

Extracting the first digit (remainder) Extracting the second digit (quotient)

＋ ＋

29

I understand what Kitsune was trying to say.

Some parts were difficult, but that's the

basics. I was hoping to be able to make a fist

fight game program soon.

I've explained it with the simplest example.

See for yourself that "27 ÷ 10" can be used to

separate 2 and 7 using the above method. This is

just an exercise.

The result sent from the CPU to the memory device

is sent to the output device like this. This is

the basics.

As described above, being able to visualize the

five major functions of a computer from input

(data) to output (data) is the basis for learning

about computers, and is the key to studying

computers from now on. Once you have seen the

forest, you can now go and see the trees

(details).

30

Translated at DeepL

If you don't understand the basics, even if you can

program, you'll end up just attaching parts (libraries

and classes) and losing the big picture. You will just

enter the world of Chaplin's Modern Times.

Mr. Ponkichi, a professor of information at the

University of Ponpoko, drew an arrow that outputs the

calculation results directly from the CPU's arithmetic

unit to the monitor without going through the main

memory, but this is an error caused by understanding

the memory unit only as a function that controls

memory, and not understanding the important part of

memory of the conversion process between pack and

zone. This is a mistake because he does not understand

the important part of memory, which is the process of

converting between packs and zones. That's how

important the basics are.

Now that we have the basics, let's move on to Episode 5.

Let's move on to the tree part (in detail) from Episode 5.

Go to Episode 5

