
31

Computer Science (Episode 5)

Episode 5 (Fundamentals of SNS Communications)

Tanuki, I hope you understand the point of the

computer.

Next time you'll be going through the trees

(detail items).

I'm sure that raccoon dogs also use their

smartphones to email, chat, and even remotely

conference with each other. The basis for this

is called inter-process communication. A

process is a program running in a computer. It's

like the apps running on your smartphone.

It's something you use every day, so you're

probably somewhat interested in it.

There is. I've always wondered, like, how many

raccoons can attend a remote meeting?

I wonder if an infinite number of raccoons can

participate in a remote meeting, etc.

Fox, you tell me.

So, let's begin loosely!

The networks we use mainly use a protocol

(communication protocol) called TCP/IP. The

TCP/IP protocol used differs for each stage

of communication, and the DARPA (four-layer)

model is based on a four-layer hierarchy. This

is illustrated in the figure below.

32

［TCP/IP hierarchy considered in the DARPA (4-tier) model］

 ・ＴＣＰ/ＩＰ

 ＩＰ ：Internet Protocol

 ＴＣＰ：Transmission Control Protocol (meaning "connection-type")

 ・ＵＤＰ/ＩＰ

 ＵＤＰ：User Datagram Protocol (datagram type, meaning connectionless

 (datagram type, meaning connectionless))

Application layer

Telenet、Http、Ftp

SMTP、NFS、

X Window

Transport layer

TCP、UDP、ICMP

Internet layer

IPｖ4、IPｖ6

data link layer

(Individual network layer)

WAN、LAN、 wireless

Sockets: Interfaces to the transport layer

TCP port, UDP port

Next time, we'll talk about sockets. Not

rockets.

Interprocess communication uses something

called sockets, which are communication

pathways at the transport layer. Remember

that.

33

 ［Example of simple interprocess communication.]

 ・Use commands in the shell (limited commands available)

 ・The pipe is the communication channel for interprocess communication.

 option

 ＄ls –l | grep “txt” | more

 Process pipe process pipe process

 list view

 contain the corresponding characters

 One screen at a time ("space" for next screen,

 "enter" for one line at a time)

Tanuki, let's start with some practice!

I want you to boot a Linux operating system called

CentOS, or if you don't have CentOS, Ubuntu or Fedora

will do.

An OS is a program (software) that is the core of a

computer. Microsoft Windows is the most famous OS, but

Linux is also an OS. I like CentOS. Boot up that OS.

Next, can you start up a terminal or something like

that?

Each command used on the command line is also a

program. It is a small program, though.

So, if you execute a command, that command is a

process. If multiple commands are executed and

data is sent and received between commands, it is

inter-process communication. Here is a simple

example.

34

You can type by pressing the key on

 pipe

the upper right side of the keyboard while

holding down the [Shift] key!

［Shift］キーを押しながら押せば入力できるよ！

How do you enter a pipe?

｜

￥ －

Okay, so in theory, you could have a remote meeting

with 500 raccoons at the same time. But I'll use

voice at the same time, so maybe 100 to 200 people.

That makes some sense. Kitsune, you are awesome!

Next, we'll talk about file descriptors that lead to

sockets.

A process (a running program) has a doorway to exchange data

with an external device. The numbers from 0 to 1023 are

assigned to those doorways in sequence. In other words, the

integers assigned to these 1024 entry/exit points are file

descriptors. Note, however, that not only hardware such as

external devices, but also processes (software) other than

yourself (process) are considered external.

Of the file descriptors, 0 is fixed to standard input such

as keyboard, 1 to standard output such as monitor or printer,

and 2 to standard error output. All other numbers are

assigned in connection order. Therefore, one process can

theoretically communicate with approximately 500 processes

simultaneously.

35

 ［file descriptor］

 Interaction between the process and external devices

 Terminal screen

 standard input 0 1 standard output

 keyboard

 2 standard error output

 1023 1022 ････ 4 3

 ・Number of entrances and exits per process (number of file opens)

I'm embarrassed when a raccoon dog

compliments me!

Okay, let's represent the explanation in

a diagram as follows.

 process

Next, let's make a program that explicitly uses

file descriptors, since the Linux operating

system is built in C. Since C is a compiler

language, we need to compile (translate) it.

Don't forget. Let's name the source program

mfd.c. You will need an editor program to

create it. I use an editor called gedit.

36

 ［From creation to execution of mfd.c］

・Create mfd.c with gedit and save. （mfd.c: process at runtime ）

 ・Create and save the data file that mfd.c uses in the program with gedit.

 ・compilation（Run on terminal command line）

 However, it is assumed that the mfd.c source file is saved in its own

 directory and that it is the current directory. The mfd.c source file is stored

 in its own directory and that directory is the current directory.

 $ gcc –o mfd mfd.c

 ・execution (e.g. program)

 $ sudo ./mfd

・result（5 characters read, 5 characters output）

 abcde

You need a program to make a

program? That's complicated!

#include <stdio.h> /* standard input/output */

int main()

{

int fd;

char buf[10];

 fd = open("data",0); /* 0：standard input：file descriptor */

read(fd,buf,5); /* fd=3：file descriptor */

 write(1,buf,5); /* 1：standard output：file descriptor */

close(fd);

}

abcdefghijklmn

Fox, what's a current directory?

37

A directory is a Windows folder.

The current directory is the folder in which

the user currently resides. The current

directory is where the contents are displayed

when the command "ls" is executed. If the file

mfd.c is found there, it can be compiled. If

the message "File does not exist" is

displayed, it means that the file is not stored

in the current directory.

In the source file mfd.c, before "close(fd);" insert a line

"printf("print file number %d",fd);" to display the

positive value of the file descriptor used to read the

data file!

If you insert a line "printf("print file number %d",fd);"

before "close(fd);" in the source file "mfd.c", you can

print the positive value of the file descriptor used to

read the data file!

Go ahead, Tanuki, give it a try, it's a great way to

practice compiling and executing the C language.

OK, I'll try.

Finally, let's talk about sockets, which are at the

heart of Episode 5. Sockets are software interfaces

(communication specifications) that processes in an

OS can use to communicate with each other.

Recently, browsers have been equipped with an

interface function for inter-process communication,

making it possible to have remote meetings and

chats on the browser, which is very convenient.

Now, let me show you a diagram of a socket!

38

 ［What is a socket?]

 File I/O and Interprocess Communication

 Terminal screen

 0 1 0 1

 Keyboard 2 2

 4 3 5 4 3

 There are connection type and datagram (connectionless)

 type

 Connection type: Communication path is secured (image of telephone line)

 Datagram (connectionless) type: no permanent ties (postal image)

 Client-server model

 Server: Process waiting for a connection

 Server program: Program responsible for accepting socket connections

 Client: Process requesting a connection

 Client program: A program that connects a socket to a server

Translated at DeepL

Process A and Process B in the above diagram

can be running in one computer, or if they are

networked, they can be remote, with Process A

running on a computer at home and Process B

running on a computer at work.

So, in Episode 6, let's try to actually program

the chat. ・・・・・.

 Continue to Episode 6

process A process B

socket socket

file

