
39

Computer Science (Episode 6)

Episode 6 (How Chat Works I)

Tanuki, it's time to learn a computer language. As I mentioned

before, the language that computers can understand is machine

language, which is input in binary (or hexadecimal). The

closest language to machine language is assembler, but that

is determined by the specifications of the CPU. In contrast,

there are BASIC, Python, Scratch, etc., which are called

interpreted languages. An interpreted language is one in which

each instruction is converted and executed in machine

language. There are also compiler languages, which cannot be

executed until the entire source program has been converted

to machine language. C, Java, C++, Cobol, and Fortran belong

to these compiler languages. There are also languages called

PHP, JSP, and ASP, which are used for server-side programming.

These are as easy to use (in the sense that they do not need

to be compiled) as an interpreter. Furthermore, the above

languages are divided into procedural languages such as BASIC,

C, Cobol, and Fortran, and object-oriented languages such as

Java, C++, Python, PHP, JSP, and ASP. Except for assembler,

the other languages are also called high-level languages

because their codes (instructions) are easy to understand by

humans because they use letters similar to English words. As

before, the chat program will be written in C, which is both

a procedural language and a compiler language. The reason is

that it is easy to imagine the operation to hardware and files.

40

I know what you mean. Object-oriented

languages have a lot of black boxes called

classes, so I don't really understand what

they are doing.

Yes, Tanuki, you can make a chat program in

Java, but I don't see the socket part, etc.

I may cover the Java language in the near

future!

Well, let's get on with the chat program,

shall we?

We will create two chat programs, one as a server

program (cserver.c) and the other as a client program

(cclient.c). Both programs are similar, but there are

some differences. The server is the service provider

and the client is the customer receiving the service.

I will first present the server program and explain its

contents.

I won't go into the details of the C language, so you'll

have to learn it by yourself. If you can't read it,

you'll have to start over from studying Japanese.

Tanuki, please remind me of the steps to run

the C language, which I explained last time.

First, start CentOS, type in (cserver.c) with

gedit, save it to the current directory,

compile it, and run it to get the process.

41

 Server program (cserver.c) ---------1

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define PORT (in_port_t)50000 /* Server (self) port number */

#define BUF_LEN 512 /* Buffer size for sending/receiving */

main()

{

 /* Variable declaration */

 struct sockaddr_in me; /* Define sockaddr_in structure with me */

 int soc_waiting; /* Socket to listen on */

 int soc; /* Sockets used for sending and receiving */

 char buf[BUF_LEN]; /* Transmit/receive buffer */

 /* Stores the server (self) address in the sockaddr_in structure */

 memset((char *)&me, 0, sizeof(me)); /* Initialize the sockaddr_in

 structure with 0 */

 me.sin_family = AF_INET; /* IPv4 */

 me.sin_addr.s_addr = htonl(INADDR_ANY); /* INADDR_ANY is an IP

 address */

 me.sin_port = htons(PORT); /* PORT=50000: 16-bit integer */

 /* Create stream-type socket with IPv4 */

 if((soc_waiting = socket(AF_INET, SOCK_STREAM, 0)) < 0){

 perror("socket");

 exit(1);

 }

 /* Set the server (self) address to the socket */

 if(bind(soc_waiting, (struct sockaddr *)&me, sizeof(me)) == -1){

 perror("bind");

 exit(1);

 }

 /* Set to listen on socket */

 listen(soc_waiting, 1);

 /* Connection request established and new socket descriptor returned */

 soc = accept(soc_waiting, NULL, NULL);

 /* Close socket descriptor for connection waiting */

 close(soc_waiting);

 /* Click here first */

 write(1, "Go ahead!\n", 10);

 /* Communication loops */

42

 Server program (cserver.c) ---------2

Tanuki, let me explain a little about the flow of data after

execution.

When you type "Hello! from the keyboard, the message goes

through the buffer in the kernel (base of the OS) and is stored in

a buf (buffer) in the process from the entrance of the standard

input (file descriptor (FD): 0) with the read instruction in ①.

Next, the message goes out from the buf in the process to the

socket in the OS with the FD allocated as the exit (S) by the

write instruction in ②. Conversely, the message from the other

party arrives from the socket in the OS through the allocated

FD (S) to the buf in the process (③), and is displayed on the

terminal screen (monitor) by leaving standard output 1 with the

write instruction. That is ④.

 do{

 int n; /* Bytes read */

 n = read(0, buf, BUF_LEN); /* ①Read from standard input 0 */

 write(soc, buf, n); /* ②Export to socket soc */

 n = read(soc, buf, BUF_LEN); /* ③Read from socket soc */

 write(1, buf, n); /* ④Write to standard output 1 */

 }

 while (strncmp(buf,"quit",4) != 0); /* end decision */

 /* Close socket descriptor for communication */

 close(soc);

}

43

 Data flow within the server process

 ①read（0, buf,….） ②write(soc, ….）

 0 1 0 1

 2 2

From the keyboard S（soc） S

 To Socket

 ③read（soc, buf,….） ④write(1, ….）

 0 1 0 0 1 to terminal screen

 2 2

 S S

 From Socket

 SOCKET() function details

 protocol family communication system Protocol to be used

 socket(AF_INET , SOCK_STREAM, 0)

 communication domain（IPｖ4） When connection type IPPROTO_TCP or 0

 AF_INET6（IPｖ6） When datagram type IPPROTO_UDP

 AF_UNIX（local communication） （SOCK_DGRAM）

 AF(Abbreviation for Address Family)

 Return value：If the connection is successful. Assigned file descriptors (>2)

 If the connection fails. -1 (<0)

 soc_waiting = return value (one of 3,4,5・・・・) Let's check it!

Tanuki, good on you for noticing!

Okay, I'll summarize how it works below.

 process

process

Buffer in

kernel

process process

buf buf

buf buf

Fox, on line 22 of the program.

socket(AF_INET, SOCK_STREAM, 0), which

defines the specification of the socket to

be created in the OS, I think.

44

htonl() function （Abbreviation for host to network long (32-bit)）

 A function that performs 32-bit byte ordering (Big-endian method). Byte-order

 means that the larger part of a 32-bit integer is stored in the smaller address.

 When sending data over the Internet, data is sent out in order from the smallest

 address to avoid confusion with the other party and to keep synchronization.

 ・Intel CPUs are stored in memory in a Little-endian fashion.

 Intel (Little-endian method) Also called host byte order!

 （A+3）address（A+2）address（A+1）address A address

DD CC BB AA

 ・When sending packets to the Internet, they are sent using the Big-endian method.

 Big-endian method Also called network byte order!

 （A+3）address（A+2）address（A+1）address A address

AA BB CC DD

OK, INADDR_ANY contains an IP address such as

"192.168.0.5". The INADDR_ANY function tells

the memory to store this IP address as

"5.0.168.192" or "192.168.0.5" for each byte

(8 bits). When the data is sent over the

Internet, including the network, it is sent

in the order of all 5s, then 0s, then 168s,

and finally 192s. Of course, this is not done

in decimal, but converted to binary numbers

of 0s and 1s.

Kitsune, while you're at it, tell

me htonl(INADDR_ANY) on line 19.

→ Transmission over the Internet

45

 Confirmation program (bite.c)：Let's check it out!

 Result

How can I check whether the CPU of my

computer belongs to the host byte order or

the network byte order?

You can find out by running the following

program (bite.c) on the raccoon dog's computer.

If the first line of the program displays

[DD:CC:BB:AA], the raccoon dog's CPU is in host

byte order. Conversely, if the order

[AA:BB:CC:DD] is displayed, it is the network

byte order.

#include <stdio.h>

int main() {

 unsigned int iVal = 0xAABBCCDD; /* hex 32-bit */

 unsigned char *pc = (char *)&iVal;

 /* Save as is Little-endian method (Intel) */

 printf("%X : %X : %X : %X\n" , pc[0] , pc[1] , pc[2] , pc[3]);

 /* Converted to Big-endian method */

 iVal = htonl(iVal); /* Abbreviation for host to network long (32-bit) */

 printf("%X : %X : %X : %X\n" , pc[0] , pc[1] , pc[2] , pc[3]);

 /* Return to Little-endian method */

 iVal = ntohl(iVal);

 printf("%X : %X : %X : %X\n" , pc[0] , pc[1] , pc[2] , pc[3]);

 return 0;

}

Host Byte Order

Network Byte Order

Host Byte Order

Fox

Fox

Fox

Fox

46

 Details of BIND() function

 file descriptor pointer of address structure length of address structure

 bind(soc_waiting , (struct sockaddr *)&me , sizeof(me))

 Return value of bind()：Success in naming the socket: 0 Failure: -1

 Contents of address structure (sockaddr_in) in case of AF_INET (IPv4)

 Defined in #include<netinet/in.h>.

By the way, I'll add the style of the bind()

function in line 27, which sets the IP address

set in the raccoon dog's PC to the socket, below.

The listen() function is the function that is always

listening for connection requests from client processes.

Needless to say, this is to send a message to the server.

When a connection request is received, the accept()

function allocates one socket (file) descriptor (positive

numbers from 0 to 1023) and establishes a connection.

In this case, it prepares a new entrance to accept

messages from the client process.

struct sockaddr_in{

 uint8_t sin_len;

 sa_familiy_t sin_family; /*Specification of AF_INET (IPv4)*/

 in_port_t sin_port; /*Server port number (50000)*/

 struct in_addr sin_addr; /* Server IP Address*/

 char sin_zero[8];

 };

And while you're at it, explain the

listen() and accept() functions.

47

 Details of the listen() function

 listen (file (here socket) descriptor, 1)

 １：It means one connection request to wait.

 The Listen function is used in a connected network where one server (process)

waits for connection requests from multiple client (process) sockets.

 Return value: 0 for success, -1 for failure.

 Details of accept() function

 accept(file descriptor, port number and address of structure sockaddr, length of

 structure)

 file descriptor：The socket descriptor used for the connection.

 Port number and address of structure sockaddr：Information (IP address, etc.) of

 the client (process) requesting the connection.

 When there is no need to return information, specify NULL.

 Structure Length：Bit length of the entire structure (information).

 If the second argument is null, null is specified.

 return value：If successful, integer value of the new socket descriptor. If failed, -1.

 The cause of the failure is that the first argument is not a file

 (socket) descriptor, and the socket() function failed to create the

 socket.

I see, communication is complicated!

Kitsune, you, how did you learn such a

complicated thing?

48

 Translated at DeepL

About 40 years ago, when 8-bit computers were just starting to

appear on the market, there was no Internet system, so I had

no choice but to read books.

That's why reading comprehension in Japanese is so

important. Nowadays, we are lucky because we can learn

almost anything by searching on the Internet. However, it is

now necessary to be able to judge whether a statement is

correct or incorrect.

 I still think it would be better to study english,mathematics,

japanese, science, and social studies (especially history) well in

high school.

 I mean to acquire the ability to make comprehensive

judgments. I am in the business of making dummies, so I will

be making a scientific guise for my dummies.

Read with skepticism.

Tanuki! Let's take a break to rest our heads.

 Next up, Episode 7.

