
49 

Computer Science (Episode 7) 

Episode 7 (How Chat Works II) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tanuki! You know that chat is real-time textual 

intercommunication. You know that in order to 

communicate with each other, you have to have a 

mutual process (a running program). It's like 

talking to each other with mutual smartphones. The 

phones can be from the same carrier (think of it 

as a retailer) or from different carriers. But the 

mechanism is the same for both parties. You just 

switch to the sender and the receiver. In the same 

way, the server program and the client program of 

a chat program are almost the same. So, since 

repeating the same explanation over and over again 

will only bore you, I'll only explain the part about 

switching between sending and receiving! 

OK, OK, I'm sick and tired of having the same 

things explained to me over and over again. 

Now, I will present a client program 

(cclient.c) that asks the server program. 

Note that the header file (professionally 

created program) (netdb.h), which is read by 

the program, defines a set of variables 

(structure) necessary for communication. 



50 

     Client program (cclient.c) ---------1 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include <stdio.h> 

#include <string.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <netdb.h> 

#define PORT     (in_port_t)50000 /* Server (self) port number */ 

#define BUF_LEN  512              /* Buffer size for sending/receiving */ 

 

main() 

{ 

 /* Variable Declaration */ 

 struct hostent  *server_ent; /* Server (counterparty) information */ 

 struct sockaddr_in  server;  /* Server (opposite) address */ 

 int soc;                     /* Socket descriptor */ 

 char hostname[]="Server Name";  /* Server (peer) host name: localhost, etc. */ 

                   /* IP address of the server is also acceptable */ 

 char buf[BUF_LEN];           /* Transmit/receive buffer */ 

 

 /* Obtain address information from the server's (the other party's) host name */ 

 if((server_ent = gethostbyname(hostname)) == NULL){ 

  perror("gethostbyname"); 

  exit(1); 

 } 

 

 /* Stores the server (peer) address in the sockaddr_in structure  */ 

 memset((char *)&server, 0, sizeof(server)); 

 server.sin_family = AF_INET; 

 server.sin_port = htons(PORT); 

 memcpy((char *)&server.sin_addr, server_ent->h_addr, 

        server_ent->h_length); 

 

 /* Create stream-type socket with IPv4  */ 

 if((soc = socket(AF_INET, SOCK_STREAM, 0)) < 0){ 

  perror("socket"); 

  exit(1); 

 } 

 



51 

          Client program (cclient.c) ---------2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       structure hostent  (netdb.h) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 /* Connect to server (other party)  */ 

 if(connect(soc, (struct sockaddr *)&server, sizeof(server)) == -1){ 

  perror("connect"); 

  exit(1); 

 } 

 

 /* the other party is first */ 

 write(1, "Wait\n", 5); 

 

 /* Communication loops */ 

 do{ 

  int n;                       /* Bytes read  */ 

 

  n = read(soc, buf, BUF_LEN); /* Read from socket soc  */ 

  write(1, buf, n);            /* Write to standard output 1  */ 

  n = read(0, buf, BUF_LEN);   /* Read from standard input 0  */ 

  write(soc, buf, n);          /* Export to socket soc */ 

 } 

 while( strncmp(buf, "quit" ,4) != 0 );        /* end decision */ 

 

 /* Closing the socket */ 

 close(soc); 

} 

 

struct hostent { 

    char  *h_name;            /* official name of host */ 

    char **h_aliases;         /* alias list */ 

    int    h_addrtype;        /* host address type */ 

    int    h_length;          /* length of address */ 

    char **h_addr_list;       /* list of addresses */ 

#define h_addr h_addr_list[0]  /* h_addr is the first address in h_addr_list.*/ 

                /* For compatibility with the past */ 

} 



52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even if you don't know C, you can at least understand how 

it works because it illustrates the flow of data 

(messages). 

With the read instruction in ⑤, a message from the server 

comes through the socket into the buffer (buf) of the 

client process. The write instruction ⑥ displays the 

message from the buffer (buf) on the specified monitor. 

The read instruction in ⑦ brings the reply message for 

the server input from the keyboard on the client side into 

the buffer (buf) of the process, and the write instruction 

in ⑧ brings it from the file descriptor (S) assigned to 

it through the socket to the server process. 

Even a raccoon can figure this out. Also, don't you think 

it is amazing that a computer can create both such a 

program and such a mechanism? 

Kitsune! I don't know anything about 

structures and such. ・・・・! 

That's right, the hardest part of C to 

understand is pointer variables (variable 

names with an asterisk (*)) and structures. But 

you can create pseudo-classes with structs and 

pointer variables. In other words, it is an 

important part of C because it is connected to 

the basic idea of classes in object-oriented 

languages, but it may be impossible without a 

thorough study of the C language. I should give 

up... If I give up, I might not be able to live 

in the animal world. 



53 

          Data flow within the client process 

                 ⑤read（soc, buf,….）       ⑥write(1,buf ….） 

                0          1              0       1 Go to terminal screen 

   2                        2 

                                                 

                 S（soc）                       S 

                                                From Socket 

 

                 ⑦read（0, buf,….）     ⑧write(soc, ….） 

                0          1   0             0    1    

   2                        2 

     From the keyboar 

                                          S                        S            

                                                                                To Socket                                    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Details of connect() function 

     Connect to the IP address that references (destinations) the socket (descriptor).  

     Once the connection is established, read and write operations from the socket  

     descriptor are possible. 

     connect（Socket descriptor, destination IP address, length of IP address (4 bytes)） 

     connect(soc, (struct sockaddr *)&server, sizeof(server)) 

     Return value: 0 for success (establishment), -1 for failure 

The connect() function checks to see if the client process 

has established a connection with the server process. 

In other words, as shown in ⑤ and ⑧ above, the socket 

descriptor (S) is the entry/exit point, and the function 

determines whether inter-process communication is 

established through the socket. 

If the connection is established and communication is 

possible, the return value of the function is 0.  

1 means that no matter how hard you try, communication 

is not possible. 

The details are as follows! 

 process 

 

process 

 

process 

 

process 

 

buf buf 

buf buf 

Buffer in 

 kernel 

 

Kitsune! Tell me about the connect() function 

on line 38 of the program! 



54 

 

 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are a few C functions in the program, 

so I'll explain them to you so that you can 

save time looking them up! 

Review of C language 1    Arrow operator 

server_ent->h_addr 

 Copies the received server information (pointer variable)  to  a  

  member (h_addr) of the client's structure (hostent). 

         server_ent：Pointer variable of structure hostent (must be a pointer  

                   variable) 

          -＞：Arrow operator 

          h_addr：Member of structure (hostent) 

Review of C language 2      Memory initialization  

memset((char *)&server, 0, sizeof(server)) 

        The length of the structure is initialized to 0 from the beginning of the  

        structure server (pointer variable) cast to the string to the length of the  

        structure. 

Review of C language 3         Data Copy 

            copy destination         copy source   Number of bytes to copy 

      memcpy((char *)&server.sin_addr, server_ent->h_addr,server_ent->h_length) 

        The received server IP address (h_addr) is copied into the client  

        structure sockaddr_in member (sin_addr) of the client structure  

        sockaddr_in for the bytes specified by h_length. 

I will compile the saved server and client 

programs, run them, and run the two processes on 

one OS (CentOS), which may be boring if you don't 

have to chat on two PCs, but it is easier to bug out 

the programs if you run them on one OS to make 

sure they work. It is easier to bug fix the program 

if you run it on one OS. 

Next, I will show you how to run the program. 

Kitsune, I entered the program and saved it, 

but what do I do after that? 



55 

    Compilation of chat programs 

   ①Save the created source files (cserver.c and cclient.c) in your home directory. 

 

 

 

 

 

 

 

 

 

 

 

 

   ②Compile. The executable files are assumed to be "sctest" and "cctest" respectively. 

    Create server executable 

 

 

       Create client executable 

 

 

 

    Running the chat program-1 

   ①When running a server process and a client process on a single PC (host) 

 ・Start two terminals. The one that starts the server process is [A] and the one that   

   starts the client process is [B].  

          ・Activate [A] first, type ". /sctest" and enter the waiting state. 

          ・Then activate [B] and type ". /cctest". The next moment, the message "Go ahead"  

           (I'm ahead) appears in [A] and "Wait" (I'll wait) in [B].is ahead" in [A] and "Wait"  

           in [B]. 

 

 

 

 

 

 

 

 

 

 

 

masa@localhost~:$ gcc –o sctest cserver.c 

masa@localhost~:$ gcc –o cctest cclient.c 

Ａ Ｂ 

fox 

fox 

fox fox 



56 

   ②Start the chat by repeating the order [A] first, then [B]. If you make a mistake in 

the procedure, the system will not respond correctly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   ③To end, type "quit". 

 

 

 

 

 

 

 

 

 

   Running the chat program-2 

①When running one server process and multiple client processes on two or more PCs (hosts) 

 

 

 

 

 

 

 

           

                               

 

fox 

fox 

fox 

fox 

fox 

fox fox 

Once the server and client programs are fully 

operational, the next step is to start chatting between 

the two PCs! 

If you can't chat, there is nothing wrong with the 

program, so you can isolate the problem to the 

communication cable or IP address settings. 

Server [A]. Client [B]. 

 

fox fox 

fox fox 



57 

      ・Start a terminal on the PC that will start the server process. Let it be the server [A]. 

           ・Start the terminal that will launch the client process. Let it be Client [B]. 

        ［IMPORTANT] You need to modify and compile the client program before starting it up! 

 

 

 

           ・Activate [A] first, type ". /sctest" and enter the waiting state. 

           ・Then activate [B] and type ". /cctest". The next moment, the message "Go ahead" (I'm ahead)  

             will appear in [A] and "Wait" (I'll wait) in [B]. 

        ・The rest is the same as in Running the chat program-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                          Translated at DeepL 

 

Interesting, interesting! 

I feel a sense of accomplishment not only in 

executing a program created by others as an 

application, but also in chatting with people 

after understanding how it works. It was a lot 

of work to get to this point, but it's very 

satisfying. Thank you, Kitsune. 

You're welcome. I'm glad the raccoon dog likes 

you too. 

Tanuki! Let's take a break, 

Let's move on to Episode 8! 

 

 

char hostname[]="Set the IP address of the server to request a connection";   


