
94

Computer Science (Episode 14)

Episode 14 (Key Points of the Java Language)

 Class Diagram

Tanuki, to be able to use the Java language, it is absolutely

necessary to understand the terms class, instance, and

constructor and what they mean. Otherwise, you'll just be a

worker attaching parts together without being able to see

the big picture.

A class is like a C language structure. However,

a structure only contains member variables

(data), while a class is a package of member

variables plus processing (functions). To make

classes easier to understand, we discussed the

C language in Episode 13. A class is like a

structure, it is only a framework. It is often

likened to a TAIYAKI mold. The mold is the

class. From this mold, you can make a TAIYAKI

with bean paste, cream, or jam. The resulting

variety of TAIYAKI is called an instance

(entity) or object (thing) because it is an actual

TIYAKI that can be eaten. Since the mold of a

TAIYAKI cannot be eaten, it is called a class.

Creating an object is also called instantiation.

The image of a class is shown in the figure on

the left.

Fox, I understand that classes, instances, and constructors are

important, but what is a class?

 Student

 （class name）

string namae

 ：

 （Fields）

void keisan()

(Methods (functions)）

95

The above class

diagram can be

represented in a

Java program as

shown on the

right.

This is just a framework without substance, so it's an area to store the

program, or code area in memory.

Next, we have constructors and instances.

The following substitution formula is important.

Student seito１ ＝ new Student(）；

（Class）（reference type variable）（new operator）（constructor）

The function (method) Student() on the right is the constructor.

class Student{

 String namae ;

 int kokugo;

 int sugaku;

 int goukei;

void keisan(String simei,int ka2,int ka3){

 namae = simei;

 kokugo = ka2;

 sugaku = ka3;

 goukei = kokugo + sugaku;

 }

}

I see. So where does this Student class exist?

Where is a constructor a function that is created? I don't think I saw

any mention of a constructor anywhere in the source file, but you

can find it at ・・・・!

96

Constructors that are not defined by the programmer are automatically

created when the source files are compiled, and are called default

constructors. Of course, the programmer may define constructors

explicitly. Because they are created automatically at compile time, the

class name (Student) becomes the constructor name.

The new operator calls the constructor (Student()) to create an

instance (entity). It is the same as a pointer variable, but the address

of the instance created by the constructor is stored in the reference

type variable (seito1). The constructor can create an instance with no

arguments, and then assign data to the member variables later, or it

can set arguments from the beginning.

Kitsune, if the constructor is automatically created at

compile time, that's good because it probably exists in the

executable file, but I think you can create any number of

instances, seito1, seito2, seito3, but in what area of memory

are they created?

Tanuki, you've got a good point. Instances are created in

the heap area of memory. The first address of each

instance in the heap area is stored in the reference type

variables seito1, seito2, seito3. However, the variables

and values of the functions (methods) in the instances

are placed in the stack area. Do you get it, raccoon dog?

Let me show you the following diagram so that you can

understand it a little better.

97

 Program Example（Let it be Rei.java.） Memory storage image

 Student Class

namae

kokugo

sugaku

goukei

keisan()

kekka()

public class Rei{

 public static void main(String args[]){

 Student seito1 = new Student();

 seito1.keisan("FOX",70,60);

 seito1.kekka();

Student seito2 = new Student();

 Seito2.keisan("Raccoon",90,80);

 Seito2.kekka();

 }

}

class Student{

 String namae ;

 int kokugo;

 int sugaku;

 int goukei;

void keisan(String simei,int ka2,int ka3){

 namae = simei;

 kokugo = ka2;

 sugaku = ka3;

 goukei = kokugo + sugaku;

 }

 void kekka(){

 System.out.println("namae:" + namae);

System.out.println("goukei:"+goukei);

}

}

stack area

Reference type

seito1 address sto.

3001番地

seito2 address sto.

4001番地

 ：

code area

 ：

OSmanagement ar.

（Heap area）

Instance 1

FOX

70

60

 ：

Instance 22

Raccoon

90

80

 ：

1001番地

1002番地

2001番地

3001番地

3002番地

3003番地

4001番地

4002番地

4003番地

98

The Java language is not easy to understand if you only look at the

program (Rai.java). It may be easier to understand if you think of it in

combination with the image of memory storage on the right. In the

second line of the program, there is the main() function, which is the

first function executed in the program, just like in C. In the third line,

the entity (instance) of OIRA (seito1) is created. It is the reference

type variable seito1 that tells you that the entity of OIRA is at

[address 3001]. A reference type variable is the same as a pointer

variable in C language. Note that seito1 is created in the stack area,

and the entity (instance) of OIRA is created in the heap area.

The heap area belongs to the OS management area.

The constructor (Student()) invoked by the new operator creates the

Ila entity while looking at the Student class defined after line 12.

Similarly, the raccoon dog entity is created on line 6 and its location is

stored in seito2.

The Student class in the lower right is only a layout, so it is stored in

the code area that contains the program.

The stack area has a fixed amount of memory to be allocated. It is

mainly used to store the return address from the main program to

the subprogram when control is transferred from the main

program to the subprogram. You will study the stack area in the

information exam, along with the terms PUSH (take out) and POP

(store).

The heap area is an area of memory that the programmer can

explicitly allocate as needed and release when finished using it.

Kitsune, you illustrated the memory area, so I think I understand it

somewhat. But I'm not sure about the stack area or heap area!

99

 Translated at DeepL

I see! The more you study, the more you know what you need to

study next? So, the more I study, the more things I don't know,

and the more I feel humbled that I don't know anything.

When I studied PUSH and POP, I was taught the "first-in,

first-out" method for inserting and outputting data, but I did not

understand the connection with programs. I was able to answer

the questions on the information exam, though.

Tanuki, you have grown up!

Furthermore, the stack area has a fixed and small

amount of memory allocated, so if you keep going

into subprograms without retrieving the stored

return address, you'll get an error message "OUT OF

MEMORY" (memory area is flat) and the program

will freeze. At such a time, you may wonder why the

program freezes when the program you are running

is small and has 2GB of memory.

Maybe I'm getting a little off topic.

I'm persistent, but I'll repeat it again.

The point of the Java language is, understanding

classes, instances, and constructors.

Let's talk about the features of the Java language in

Episode 15.

