
87

Computer Science (Episode 13)

Episode 13 (Key Points in C Language)

Tanuki, there are many computer languages, which can be broadly

classified into procedural languages and object-oriented

languages. Among the procedural languages, C is the most

important, in my opinion, because it is a language similar to an

assembly language and an object-oriented language.

Furthermore, the various Linux operating systems are

programmed in C.

When studying C, it is a standard practice to start with the basics,

such as variables, arrays, and includes that use existing programs.

Here, I'll focus on pointer variables and structs, where C learners

fall behind.

The key points of the C language are,

without a doubt, pointer variables and

structures!

Pointer variables are prefixed with an asterisk (*)!

int *a;

It's an integer definition of a pointer variable. But like a normal

numeric variable.

a = 56; (Not this one.)

error.

a = Memory Address;（This is OK.）

However, only one address that actually exists in memory can be

assigned. An arbitrary address is not allowed.

88

int *a;

It is possible to assign an address directly to a pointer variable by doing

the following

a = (int*)0x0000ff11 （Hexadecimal 8-digit）

However, if the directly assigned address is in the middle of a program,

there is a risk that it will run out of control or the OS itself will be

damaged, so this is not usually done.

Basically, the address is assigned via a variable as follows.

00000000

00000000

00000000

00010100

Variable b can be used as a variable, and the address of the storage

location of the value of variable b is stored in the pointer variable a, so

it can be used as needed.

int b = 20;

a = &b;

which is the same as a =

&b;.Using the image dia

gram on the right,The

value of &b is [00000100].

and the value of a will also

be the first address[0000

0100].

（Decimal 20）

Integer 4 bytes

 Imaged figure of memory

address Variable name b

(0x)00000100

 00000101

00000110

00000111

Kitsune, understood!

If variable b specified as an int (integer) type allocates a 4-byte

storage area in memory, and the first address of that storage area is

[00000100] in hexadecimal (0x), then that address is assigned to the

pointer variable a, right?

It's just that the value 20 (00010100 in binary) is not stored, but the

location (address) is stored. OK, OK, I get it.

89

 Variable Declaration in C Imaged figure of memory

address ａ

 char *a ; 1001 number

 char namae[4] ; namae

 2001 number

 namae[0]=”F”; 2002 number

 namae[1]=”O”; 2003 number

 namae[2]=”X”; 2004 number

 a = namae ;

 ※ What is the value that goes into the pointer variable a?

F

O

X

Now that we've talked about pointer variables of type integer (int), we

should talk about pointer variables of type character (char).

The char in the character type declaration comes from the English word

character. We must also talk about arrays.

Arrays handled in C are also pointer variables.

The pointer variable char *a corresponds to the variable char b, which

corresponds to 1 byte of variable b. Since int b is 4 bytes, char *a

cannot be used as a pointer variable for int b. This is an An error will

result.

The types must be aligned so that a pointer variable of character type

corresponds to a variable of character type, and a pointer variable of

integer type corresponds to a variable of integer type.

２００１

The program on the left declares a pointer variable of character type

and an array of character type. Next, "F" is assigned to subscript 0,

"O" to subscript 1, and "X" to subscript 2. The image on the right

shows how the three characters are stored in memory. The memory

area is addressed from 2001 to 2004 for the sake of convenience. Is the

pointer variable *a created in a separate area from the array and its

address set to 1001? So the array name namae is a pointer variable that

stores the first address of the array (at 2001)? So the value of namae

is assigned to a, so the value of a is [2001]. That makes sense!

90

When you use pointer variables, you get weird things like the

following. Tanuki, you know what I mean.

int *a, *b;

int c;

c = 50;

a = &c;

b = a;

If I run this program, the values of *a and *b will be 50!

50

0x0000E00A

0x0000E00A

 address

0x0000E00A

c

b a

I know, I know.

You assign the address of the storage area that stores the value

50 in &c to the pointer variable a, and then you pass the address

of variable c from a to the pointer variable b. In this way, the

value 50 of c can be shared through the address. Also, you can

retrieve the address of the variable's storage area by appending

& to an ordinary variable. Strange, but I learned something.

I was just thinking that this address passing would make it

possible to pass data between COBOL and FORTRAN, which are

two different languages. Of course, it would be possible between

COBOL and C, too.

Tanuki, you, my friend, have evolved!

Tanuki is right, you can pass data between different

languages using address passing. In fact, complex

calculations are done in C, and the results are

stored in COBOL.

91

 structure Shape Declaration (Shape Layout)

 struct student { student

 (Structure) Declaration Structure name (type)

 char name[20]; member variable

 ;character type Array (20 pieces, 20 bytes)

 int kokugo;

 ;integer type

 int sansu; member variable

 ;integer type

 }

 How about this form: ・・・・?

 No number (address) or anything is given.

 There is only a form.

name[0]

name[1]

name[2]

name[18]

name[19]

kokugo

sansu

Now, let's talk about the second point, structures.

A structure is a package of data.

Inside the package, you can pack various variables, pointer

variables, arrays, etc., and the package can be handled in

a single life.

The characteristic of a structure is that only a framework for data

entry is created.

The data is to be entered and become an entity (instance) in the

form of name: Yamada, Japanese: 70, arithmetic: 80, name:

Suzuki, Japanese: 60, arithmetic: 90, and so on, constrained by

that framework.

 Similar to classes in the Java language, structures can only

define various variables. In contrast, a class can define data and a

process (program) to be executed.

92

 Embodiment example 01
struct student seito1 = {“FOX”,70,60} ;

（Structure student）type variable(seito1）

An address is assigned only after materialization.

 seito1（pointer variable）

 2001 number address

 1001 number

Data Acquisition 1002 number

seito1.name ：

 1001 number ; name FOX ：

 seito1.kokugo

 1001 number ;kokugo 70

seito1.sugaku

 1001 number ;sugaku 60

 Similarly, materialization in the case of student 2 (seito2)

struct student seito2 = {“Raccoon”,90,80} ;

（Structure student）type variable(seito2）

 An address is assigned only after materialization.

 seito2

 2002 number address

 1501 number

Data Acquisition 1502 number

seito2.name ：

 1501 number;name Raccoon ：

 seito2.kokugo

 1501 number;kokugo 90

seito2.sugaku

 1501 number;sugaku 80

F

O

X

：

blank space

70

60

R

a

c

c

：

blank space

90

80

Now, let me show you an example of structure

materialization (instantiation)

1001

1501

93

 Translated at DeepL

I see what you mean, it is convenient to be able to input data

for one person at a time. It would also prevent some input

errors.

Computers are being improved to make them more convenient

for people to use, so it is not surprising that they came up

with the idea of a structure.

As I said before, structures and classes are different, but with

structures and function pointers, you can create pseudo-classes.

A class encapsulates (data + processing). A structure is only

member variables (i.e., data). Since a function is a mass of

processing, you can understand that you can create a

pseudo-class by adding a function to a structure. Explaining

pseudo-classes makes C look difficult, so I'll stop. What I want

you to understand is that C, a procedural language, is connected

to C++ and Java, object-oriented languages.

Next, in Episode 14, I will talk about the key points of the Java

language, including classes.

