
224

Computer Science (Episode 29)

Episode 29 (Malware Analysis I)

 Using the Ghidra Tool

Tanuki, in order to perform reverse engineering, you need the

right tools.

Reverse engineering tools include "IDA Freewire" and "Ghidra.

IDA Freewire is a free version of the commercial product IDA

Pro. Ghidra is an open source software developed by the

National Security Agency (NSA). We will use this one because

it is a tool that is currently attracting a lot of attention.

I do not intend to explain the operation of "Ghidra" in the same

way as before, so please study the details of "Ghidra" by

yourself. The manual of "Ghidra" alone is more than 600 pages

long.

Kitsune, I understand. I'll study the necessary parts of the

operation myself on the net and in books. By the way, what are

the prerequisites for understanding the contents of "Ghidra" ?

Tanuki, the prerequisites for understanding the contents of

"Ghidra" are an understanding of assembler language, C

language and binary (hexadecimal) files.

But don't worry. I will explain everything except the

operations of "Ghidra" in an easy-to-understand manner

using real-life examples.

Through reverse engineering, you will be reminded of the

importance of assembler and C.

タヌキ、「Ghidra」の内容を理解する為の前提条件は

アセンブラ言語と C言語とバイナリ（１６進数）ファイ

ルの理解だ。

でも、心配しなくて良いよ。「Ghidra」の操作以外は実

例を使って、わかり易く説明するから。

リバースエンジニアリングを通して、アセンブラとＣ言

語の重要性を再認識してくれ。

225

 mfd.c（source） Forcing memfd.exe to open

 Import stdio.h at the same time

What's a real example? What are you going to use?

A simple C program (mfd.c) that uses only standard input/output

(stdio.h) to read a text file (data) and display its contents on the

screen.

Using a simple known source program, the script is only about four

lines long, so it is clear how it is decompiled and disassembled by

"Ghidra". However, it should be noted that when the executable file

is created from the source code, stdio.h, which is also a C

language program, is included. The following figure illustrates the

situation.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int fd;

 char buf[10];

 fd = open("data",0);

 read(fd,buf,5);

 write(1,buf,5);

 close(fd);

}

•ELF______________>_____

_@_____@_______ｸ___________@_8_

 _@_____________@____

___@_@_____@_@_____ ・ ______ ・

______________________8_______8_@

_____8_@__________________________

_____________________@_______@___

__D_______D_________

_______________________`_______`___

__<_______@_________

_____________(_______(_`_____(_`___

__ ﾐ _______ ﾐ

_______________________T_______T_

@_____T_@_____D_______D_______

________P 蚯 d_____ _______

@______

@_____4_______4_______________Q

蚯

d__________________________________

__________________R 蚯

d______________`_______`_____ ・

______ ・

______________/lib64/ld-linux-

x86-64.so.2_____________GNU_

____________ _______________GNU_

 Creating C executables on CentOS

$ gcc -o emfd.exe mfd.c

 executable file source

Decompile & Disassemble

with "Ghidra”.
I see. I see...even if you open the executable file

(emfd.exe) with notepad or something, it is still a

mess and confusing. So, you revert (emfd.exe) to

the assembler language or the original source

language and study the mechanism of "Ghidra" by

comparing them. Nice work, Kitsune.

226

 emfd.exe emfd.exe(machine language)

Assembler language of “emfd.exe”

Tanuki! Malware is embedded in an executable file (exe).

The next step is reverse engineering from the executable file.

•ELF______________>_____

_@_____@_______ｸ___________@_8_

 _@_____________@____

___@_@_____@_@_____ ・ ______ ・

______________________8_______8_@

_____8_@__________________________

_____________________@_______@___

__D_______D_________

_______________________`_______`___

__<_______@_________

_____________(_______(_`_____(_`___

__ ﾐ _______ ﾐ

_______________________T_______T_

@_____T_@_____D_______D_______

________P 蚯 d_____ _______

@______

@_____4_______4_______________Q

蚯

d__________________________________

__________________R 蚯

d______________`_______`_____ ・

______ ・

______________/lib64/ld-linux-

x86-64.so.2_____________GNU_

____________ _______________GNU_

雪斯_2 ﾗ{S ﾔ装 2 ﾇ・・ﾄﾑ

____________________-______________

___________3___

________libc.so.6_read_close_

open___libc_start_main_writ

e___gmon_start___GLIBC_2.2

.5__________________________________

_u_i ____B_______ ・

`_______________________`_____

 Open in Binary Editta

disassembly

main（）Beginning of function

I can see the

reverse

engineering going

on here.

So 55 in hex is the

beginning of the

main function?

That's great fox!

リバースエンジニ

アリングの流れが

良く分かるぞ。16

進数の 55がmain

関数の始まりか。

すごいなキツネ！

decompile

227

 ［Comparison of the decompiled file with the main source file (mfd.c)]

Yes, you can decompile from the assembler

language back to the script in the original

source file.

So, by comparing the decompiled script with

the script in the original source file, you can

see that the contents of the main() function

are almost the same. The only difference is the

variable names. The difference is only in the

variable names, since we can't read the names

of the variables in the original source file.

decompile

decompile

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int fd;

 char buf[10];

 fd = open("data",0);

 read(fd, buf, 5);

 write(1, buf, 5);

 close(fd);

}

The Big

 Difference

variable name

228

 ［Launch Ghidra ］

Tanuki, the "Ghidra" tool reads the executable file

(emfd.exe), performs binary editing, disassembly, and

decompilation all at once, and displays the results. Below is

a diagram of the Ghidra tool after loading (emfd.exe).

However, as usual, the installation procedure of "Ghidra" to

"kali Linux" is not explained here, so please look it up on the

net if necessary.

icon

229

 [Importing (loading) “emfd.exe” into Ghidra]

disassembly

decompile

binary

Click to switch

230

 Translated at DeepL

Kitsune, "Ghidra" (Ghidorah), a virtual monster, looks

amazing in the opening screen.

It looks like it's going to do something bad.

Reverse engineering itself involves stealing the contents of

a developed program, you know. But here, it is used to

analyze malware, learn how it works, and protect your PC.

In "Episode 30," we will study emfd.exe using "Ghidra.

